
CHAPTER 7

Types

1. Terminology

One of the most important notions in model theory is that of a type. Intuitively, a type is
the complete list of formulas ϕ(x1, . . . , xn) satisfied by some tuple (a1, . . . , an).

Definition 7.1. Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables. If A
is an L-structure and a1, . . . , an ∈ A, then the type of (a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an) };
we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A is understood. An n-
type in L is a set of formulas of the form tpA(a1, . . . , an) for some L-structure A and some
a1, . . . , an ∈ A. (I will sometimes call types complete types to distinguish them from the partial
types defined below.)

Some observations:

– If i:A → B is an elementary embedding and a1, . . . , an ∈ A, then (a1, . . . , an) and
(f(a1), . . . , f(an)) have the same type.

– Two n-tuples (a1, . . . , an) from A and (b1, . . . , bn) from B satisfy the same n-type
precisely when (A, a1, . . . , an) ≡ (B, b1, . . . , bn). (This is supposed to mean: add new
constants c1, . . . , cn to the language and regard A and B as (L ∪ C)-structures by
interpreting ci as ai in A and as bi in B.)

It will occasionally be useful to also consider “incomplete” (or even inconsistent) lists of
formulas: this is a partial type.

Definition 7.2. Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables. A
partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

– If p(x1, . . . , xn) is a partial n-type in L, we say (a1, . . . , an) realizes p in A if every
formula in p is true of a1, . . . , an in A.

– If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say that p is
realized or satisfied in A if there is some n-tuple in A that realizes p in A. If no such
n-tuple exists, then we say that A omits p.

What distinguishes the (complete) types among the partial types? Essentially, the types
are the maximally consistent partial types. This follows from the fact that they can be realized
in some model, and that they contain either ϕ(x1, . . . , xn) or ¬ϕ(x1, . . . , xn) for any L-formula
ϕ whose free variables are among the fixed variables x1, . . . , xn. And, indeed, if a partial type
has these two properties it must be a complete type: for if a partial n-type p is realized by
(a1, . . . , an), we must have p ⊆ tp(a1, . . . , an). If p is also complete, then p ⊇ tp(a1, . . . , an)
follows as well. (For if ϕ 6∈ p, then ¬ϕ ∈ p, so ¬ϕ ∈ tp(a1, . . . , an), hence ϕ 6∈ tp(a1, . . . , an).)

1

2 7. TYPES

2. Types and theories

Definition 7.3. Let T be a theory in L and let p = p(x1, . . . , xn) be a partial n-type in
L. If T has a model realizing p, then we say that p is consistent with T or that p is a type of
T . The set of all complete n-types consistent with T is denoted by Sn(T).

Observe:

Lemma 7.4. Let T be a theory and p be a partial n-type consistent with T . Then p can be
extended to a complete n-type q which is still consistent with T .

Proof. If p(x) is some partial n-type consistent with T then, by definition, there is some
model M of T in which there is some n-tuple of elements a realizing p(x). Then q = tpM (a) is
a complete type consistent with T and extending p. �

Suppose p is consistent with T and M is a model of T : does this mean that p will be
realized in M? The answer is no: the types consistent with T are those types that are realized
in some model of T . It may very well happen that M is a model of T and p is an n-type
consistent with T , but p is not realized in M , even when the theory T is complete. So what
can we say?

Definition 7.5. If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that p is finitely satisfiable in A if any finite subset of p is realized in A.

Proposition 7.6. Let M be a model of a complete theory T . Then a partial type p is
consistent with T if and only if it is finitely satisfiable in M .

Proof. First suppose that p is consistent with T . To show that p is finitely satisfiable in
M , let ϕ1(x), . . . , ϕn(x) be finitely many formulas in p. We must have

T |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

for if this is not true, then T |= ¬∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
by completeness of T . But then p

cannot be satisfied in any model of T , contradicting the fact that p is consistent with T . So, if
M is a model of T , we must have

M |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

since ϕ1(x), . . . , ϕn(x) were arbitrary, the type p is finitely satisfiable in M .

Conversely, suppose that p is finitely satisfiable in M . Add a fresh constant c to the
language and look at the theory

T ′ = T ∪ {ϕ(c) : ϕ ∈ p}.
If p is finitely satisfiable in M , then M is a model for every finite subset of T ′. So, by the
compactness theorem, T ′ has a model N : this is a model of T in which p is realized, showing
that p is consistent with T . �

The next lemma formulates some useful properties of finitely satisfiable partial types.

Lemma 7.7. Let M be a model and p be a partial type.

(1) If M ≡ N and p is finitely satisfiable in M , then p is also finitely satisfiable in N .
(2) p is finitely satisfiable in M if and only if p is realized in some elementary extension

of M .

3. TYPE SPACES 3

(3) If p is finitely satisfiable in M , then p can be extended to a complete type q which is
still finitely satisfiable in M .

Proof. (1) If M ≡ N then M and N are models of the same complete theory T . So
if p is finitely satisfiable in M , then it is consistent with T and hence finitely satisfiable
in N (using the previous proposition twice, once for M and once for N).

(2) Consider the theory T = ElDiag(M) ∪ {ϕ(c) : ϕ ∈ p}, where c is a fresh constant
which does not occur in L. If p is finitely satisfiable in M , then M is a model of
every finite subset of T , so, by the compactness theorem, T has a model N . This, by
construction, is a model in which M embeds and in which p is realized.

Conversely, if p is realized in some elementary extension of M , then this extension
is a model which is elementary equivalent to M and in which p is (finitely) satisfied,
so p is finitely satisfiable in M by (1).

(3) By (2) p is realized in some elementary extension, by some element a say. Then the
type of a in this elementary extension is a complete type extending p.

�

3. Type spaces

Crucially, the set Sn(T) can be given the structure of a topological space. To see this,
consider sets in Sn(T) of the form

[ϕ(x1, . . . , xn)] = { p ∈ Sn(T) : ϕ ∈ p },
where ϕ(x1, . . . , xn) is some formula. The following lemma states some basic properties of
sets of the form [ϕ]: they are not hard to prove (in fact, they are direct consequences of the
completeness properties of types).

Lemma 7.8.

[ϕ] ⊆ [ψ]⇔ T |= ϕ→ ψ

[ϕ] = [ψ]⇔ T |= ϕ↔ ψ

[⊥] = ∅
[>] = Sn(T)

[ϕ] ∩ [ψ] = [ϕ ∧ ψ]

[ϕ] ∪ [ψ] = [ϕ ∨ ψ]

[ϕ]c = [¬ϕ]

Since
[ϕ ∧ ψ] = [ϕ] ∩ [ψ] and [>] = Sn(T)

sets of the form [ϕ] constitute a basis. The topology generated from these sets is called the
logic topology and we have:

Theorem 7.9. The set Sn(T) with the logic topology is a compact Hausdorff space with a
basis of clopens.

Proof. Since [ϕ]c = [¬ϕ] it is clear that each basic open set is also closed. In addition, if
p and q are two n-types and p 6= q, then there is some formula ϕ such that ϕ ∈ p and ϕ 6∈ q (or
vice versa). But the latter means that ¬ϕ ∈ q, so [ϕ] and [¬ϕ] are two disjoint open sets with p
being an element of the first set and q being an element of the second. So Sn(T) is Hausdorff.

4 7. TYPES

To see that Sn(T) is compact, let (Ui)i∈I be a collection of opens such that
⋃

i∈I Ui. The
task is to find a finite subset I0 ⊆ I such that

⋃
i∈I0

Ui = Sn(T). Since every open set is a union

of basis elements, we may just as well assume that each Ui is of the form [ϕi]. Now suppose
that

⋃
i∈I [ϕi] = Sn(T) but there is no finite subset I0 such that

⋃
i∈I0

[ϕi] = Sn(T).

Consider the partial type

p(x) = {¬ϕi(x) : i ∈ I}.
We claim that p(x) is consistent with T : for if not, there would be i1, . . . , in ∈ I such that

{¬ϕi1 , . . . ,¬ϕin}
would already be inconsistent with T , by the compactness theorem. But then

[¬ϕi1 ∧ . . . ∧ ¬ϕin] = [¬ϕi1] ∩ . . . ∩ [¬ϕin] = ∅,
and hence

[ϕi1 ∨ . . . ∨ ϕin]c = [¬(ϕi1 ∨ . . . ∨ ϕin)] = [¬ϕi1 ∧ . . . ∧ ¬ϕin] = ∅.
Therefore

[ϕi1 ∨ . . . ∨ ϕin] = [ϕi1] ∪ . . . ∪ [ϕin] = Sn(T),

contradicting our assumption.

So the type p(x) is consistent with T . But that means that p can be extended to a complete
type q(x) which is still consistent with T (see Lemma 7.4). So q ∈ Sn(T), but q 6∈ [ϕi] for any
i as q extends p. This contradicts our assumption that

⋃
i∈I [ϕi] = Sn(T). We conclude that

Sn(T) is compact. �

Remark 7.10. Compact Hausdorff spaces with a basis of clopens are called Stone spaces,
after Marshall Stone who established a duality between these spaces and Boolean algebras.

4. Exercises

Exercise 1. Suppose M is an L-structure and σ:M → M is an automorphism of M .
Show that for any n-tuple m = (m1, . . . ,mn) of elements from M , the types of m and σ(m) =
(σm1, . . . , σmn) are the same.

Exercise 2. Let κ be an infinite cardinal with κ ≥ |L|, and let T be a κ-categorical L-
theory without finite models. Show that if M is a model of T of cardinality κ, then M realizes
all n-types over T .

Exercise 3. Use the previous two exercises to determine all Sn(T) for

(a) T = DLO, the theory of dense linear orders without endpoints.
(b) T = RG, the theory of the random graph.
(c) T = ACF0, the theory of algebraically closed fields of characteristic 0.

Exercise 4. In this exercise we look at the theory V SQ of vector spaces over Q of positive
dimension. The language of this theory contains symbols + and 0, for vector addition and the
null vector, as well as unary operations mq, one for every q ∈ Q, for scalar multiplication with
q. The theory V SQ has axioms expressing that (+, 0) is an infinite Abelian group on which Q
acts as a set of scalars.

(a) For which infinite κ is V SQ κ-categorical?
(b) Show that V SQ is complete.
(c) Determine all type spaces Sn(T) for T = V SQ.

4. EXERCISES 5

Exercise 5. Show that the theory of (R, 0,+) has exactly two 1-types and ℵ0 many 2-
types. Hint: Think of the previous exercise.

Exercise 6. We work in the language consisting of a single binary relation symbol E. Let
T be the theory expressing that E is an equivalence relation, that all the equivalence classes
are infinite and that there are infinitely many equivalence classes.

(a) Convince yourself that there is such a first-order theory T .
(b) For which infinite κ is T κ-categorical?
(c) Give a complete description of all Sn(T).

Exercise 7. (a) Consider M = (Z,+) and T = Th(M). Determine for any pair
of elements a, b ∈ M whether they realize the same or different 1-types. Are there
1-types consistent with T that are not realized in M?

(b) Idem dito for M = (Z, ·).

CHAPTER 8

Isolated types and the omitting types theorem

Types can either be isolated or not: this is the most important distinction one can make
between different kinds of types. A type is isolated if it is an isolated point in the type space:
this turns out to be equivalent to saying that it is generated by a single formula (for this reason
isolated types are also often called principal types).

Isolated types and non-isolated types behave very differently. Indeed, suppose T is a
complete theory formulated in a countable language. Then every isolated type will be realized
in every model of T , while for any non-isolated type there will be at least one model in which
it is omitted. The aim of this chapter is to prove these facts.

1. Isolated types

Definition 8.1. A formula ϕ(x) is called complete or isolating over a theory T if ∃xϕ(x)
is consistent with T and we have

T |= ϕ(x)→ ψ(x) or T |= ϕ(x)→ ¬ψ(x)

for any formula ψ(x).

Note that if a formula ϕ(x) is complete, then

p(x) = {ψ(x) : T |= ϕ(x)→ ψ(x) }

is a type. Indeed, we will have {p} = [ϕ], showing that p is isolated point in the type space. In
general, we have:

Proposition 8.2. Let T be a theory and p be a complete type of T . Then the following
are equivalent:

(1) The type p is an isolated point in the space Sn(T).
(2) The type p contains a complete formula.
(3) There is a formula ϕ(x1, . . . , xn) ∈ p such that

T |= ϕ(x)→ ψ(x)

for every ψ(x) ∈ p(x).

Proof. These are all different ways of saying that {p} = [ϕ] for some formula ϕ. �

A type will be called isolated if it satisfies any of the equivalent conditions in the previous
proposition. It will be useful to extend the notion of isolatedness to partial types, which we do
as follows:

7

8 8. ISOLATED TYPES AND THE OMITTING TYPES THEOREM

Definition 8.3. Let T be an L-theory and p(x) be a partial type. Then p(x) is isolated
in T if there is a formula ϕ(x) such that ∃xϕ(x) is consistent with T and

T |= ϕ(x)→ ψ(x)

for all ψ(x) ∈ p(x).

Proposition 8.4. Let T be a complete theory and p be a partial type which is consistent
with T . If p is isolated, then p is realized in every model of T .

Proof. Let M be a model of T and suppose that ϕ(x) is a formula such that ∃xϕ(x) is
consistent with T and

T |= ϕ(x)→ ψ(x)

for all ψ(x) ∈ p(x). If ∃xϕ(x) is consistent with T and T is complete, we must have

T |= ∃xϕ(x),

and therefore

M |= ∃xϕ(x).

So we have some n-tuple m such that M |= ϕ(m). This implies that M |= ψ(m) for every
ψ ∈ p, so p is realized in M . �

2. The omitting types theorem

Our next task it to prove a kind of converse to Proposition 8.4, showing that non-isolated
types can be omitted. For this we need the following result, which was Proposition 2.5:

Proposition 8.5. (=Proposition 2.5) Suppose T is a consistent theory in a language L
and C is a set of constants in L. If for any formula ψ(x) in the language L there is a constant
c ∈ C such that

∃xψ(x)→ ψ(c) ∈ T,
then T has a model whose universe consists entirely of interpretations of elements of C.

Theorem 8.6. (Omitting types theorem) Let T be a consistent theory in a countable lan-
guage. If a partial type p(x) is not isolated in T , then there is a countable model of T which
omits p(x).

Proof. Let C = {ci ; i ∈ N} be a countable collection of fresh constants and LC be the
language L extending with these constants. Let {ψi(x) : i ∈ N} be an enumeration of the
formulas with one free variable in the language LC .

We will now inductively create a sequence of sentences ϕ0, ϕ1, ϕ2, . . ., and then apply Propo-
sition 8.5 to T ′ = T ∪ {ϕ0, ϕ1, . . .} and the set of constants C.

If n = 2i, we take a fresh constant c ∈ C (one that does not occur in ϕm with m < n) and
put

ϕn = ∃xψi(x)→ ψi(c).

This makes sure that the witnessing condition from Proposition 8.5 will be satisfied.

If n = 2i+1 we make sure that ci omits p(x), as follows. Consider δ =
∧

m<n ϕm, and write
δ as δ(ci, c) where c is a sequence of constants not containing ci. Since p(x) is not isolated,
there must be a formula ψ(x) ∈ p(x) such that

T 6|= ∃y δ(x, y)→ ψ(x);

3. EXERCISES 9

in other words, there is a formula ψ(x) ∈ p(x) such that T ∪{∃y δ(x, y)}∪{¬σ(x)} is consistent.
Put ϕn = ¬σ(ci).

The proof is now finished by showing by induction that each T ∪{ϕ0, . . . , ϕn} is consistent
and then applying Proposition 8.5. �

3. Exercises

Exercise 8. Consider all the type space Sn(T) from the exercises in the previous chapter.
Determine for each type in Sn(T) whether it is isolated or not. Also, if the type is isolated, find
a complete formula in it; and if the type is not isolated, find a model in which it is omitted.

Exercise 9. Prove the generalised omitting types theorem: Let T be a consistent theory
in a countable language and let {pi : i ∈ N} be a sequence of partial ni-types (for varying ni).
If none of the pi is isolated in T , then T has a countable model which omits all pi.

Exercise 10. Prove that the omitting types theorem is specific to the countable case: give
an example of a consistent theory T in an uncountable language and a partial type in T which
is not isolated, but which is nevertheless realised in every model of T .

